Opini PEMANFAATAN TEKNOLOGI NUKLIR (Bag. II)

PEMANFAATAN TEKNOLOGI NUKLIR

Senin, 28 Februari 2011 | 10:31 WIB

Saat ini pemanfaatan teknologi nuklir telah merambah ke berbagai bidang, namun secara umum pemanfaatan teknologi nuklir dibagi menjadi dua kelompok besar, yaitu untuk kepentingan militer dan kepentingan damai (sipil).

Penggunaan Teknologi Nuklir unt<>uk Kepentingan Damai (Sipil)

Aplikasi medis

Pemanfaatan teknologi nuklir dibidang kedokteran dikategorikan menjadi;  diagnosa dan terapi radiasi, perawatan yang efektif bagi penderita kanker. Pencitraan (sinar X, CT Scan), penggunaan Tecnesium untuk diinjeksikan pada molekul organik, perunutan radioaktif dalam tubuh sebelum diekskresikan oleh ginjal, dan lain-lain.

Aplikasi industri
Pemanfaatan teknologi nuklir terkait dengan teknologi pertambangan digunakan pada eksplorasi minyak dan gas. Teknologi nuklir berperan dalam menentukan sifat dari bebatuan sekitar seperti porositas dan litografi. Teknologi ini melibatkan penggunaan neutron atau sumber energi sinar gamma dan detektor radiasi yang ditanam dalam bebatuan yang akan diperiksa.
Pada bidang konstruksi, khususnya paka teknologi jalan, Teknologi nuklir digunakan untuk  mengukur kelembaban dan kepadatan tanah, aspal, dan beton. Untuk tujuan ini umumnya digunakan cesium-137 sebagai sumber radiasinya. Pemanfaatan teknologi nukir juga digunakan untuk menentukan kerapatan (kepadatan) suatu produk industri, misalnya untuk menentukan kepadatan tembakau pada rokok digunakan Sr-90, juga dapat digunakan untuk menentukan ketebalan kertas. Saat ini terdapat beberapa industri rokok di Indonesia yang telah memanfaatkan teknologi ini untuk menjaga kwalitas rokoknya.

Apikasi komersial
Ionisasi dari Americium-241 digunakan pada detektor asap dengan memanfaatkan radiasi alfa. Tritium digunakan bersama fosfor pada rifle untuk meningkatkan akurasi penembakan pada malam hari. Pemanfaatan sifat perpendaran dari beberapa unsur digunakan dalam beberapa rambu, diantaranya perpendaran tanda “exit”

Pemrosesan makanan dan pertanian
Irradiasi makanan adalah proses memaparkan makanan dengan radiasi pengion yang ditujukan untuk  menghancurkan mikroorganisme, bakteri, virus, atau serangga yang diperkirakan berada dalam makanan. Jenis radiasi yang digunakan adalah sinar gamma, sinar X, dan elektron yang dikeluarkan oleh pemercepat elektron. Aplikasi lainnya yaitu pencegahan proses pertunasan, penghambat pemasakan buah, peningkatan hasil daging buah, dan peningkatan rehidrasi. Secara garis besar, irradiasi adalah pemaparan (penyinaran dengan radiasi) suatu bahan untuk mendapatkan manfaat teknis. Teknik seperti ini juga digunakan pada peralatan medis, plastic, tabung/pipa untuk jalur pemipaan gas, saluran untuk penghangat lantai, lembaran untuk pengemas makanan, onderdil otomotif, kabel, ban, dan bahkan batu perhiasan. Dibandingkan dengan pemaparan irradiasi makanan, volume penggunaan nuklir pada aplikasi tersebut jauh lebih besar namun tidak diketahui oleh konsumen.
Efek utama dalam pemrosesan makanan dengan menggunakan radiasi pengion berhubungan dengan kerusakan DNA. Mikroorganisme tidak mampu lagi berkembang biak dan melanjutkan aktivitas mereka. Serangga tidak akan selamat dan menjadi tidak mampu berkembang. Tanaman tidak mampu melanjutkan proses pematangan buah dan penuaan. Semua efek ini menguntungkan bagi konsumen dan industri makanan.
Harus diperhatikan bahwa jumlah energi yang efektif untuk radiasi cukup rendah dibandingkan dengan memasak bahan makanan yang sama hingga matang. Bahkan energi yang digunakan untuk meradiasikan 10 kg bahan makanan hanya mampu memanaskan air hingga mengalami kenaikan temperatur sebesar 2,5 oC.
Keuntungan pemrosesan makanan dengan  radiasi pengion adalah, densitas energi per transisi atom sangat tinggi dan mampu membelah molekul dan menghasilkan ionisasi (tercermin pada nama metodenya) yang tidak dapat dilakukan dengan pemanasan biasa. Hal inilah yang menjadi alasan yang menguntungkan. Perlakuan bahan makanan solid dengan radiasi pengion dapat menciptakan efek yang sama dengan pasteurisasi bahan makanan cair seperti susu. Namun, penggunaan istilah pasteurisasi dingin dan iradiasi adalah proses yang berbeda, meski bertujuan dan memberikan hasil yang sama pada beberapa kasus.
Iradiasi makanan saat ini diizinkan di 40 negara dan volumenya diperkirakan melebihi 500.000 metrik ton setiap tahunnya di seluruh dunia.
Perlu diperhatikan bahwa iradiasi makanan secara esensial bukan merupakan teknologi nuklir; hal ini berhubungan dengan radiasi ionisasi yang dihasilkan oleh pemercepat elektron dan konversi, namun juga mungkin menggunakan sinar gamma dari peluruhan inti nuklir. Penggunaan di dunia industri untuk pemrosesan menggunakan radiasi pengion, menempati sebagian besar volume energi pada penggunaan pemercepat elektron. Iradiasi makanan hanya sebagian kecil dari aplikasi nuklir jika dibandingkan dengan aplikasi medis, material plastik, bahan mentah industri, batu perhiasan, kabel, dan lain-lain.

Energi nuklir
Energi nuklir adalah tipe teknologi nuklir yang melibatkan penggunaan tekendali dari reaksi fisi nuklir untuk melepaskan energi, termasuk propulsi, panas, dan pembangkitan energi listrik. Energi nuklir diproduksi oleh reaksi nuklir terkendali yang menciptakan panas yang lalu digunakan untuk memanaskan air, memproduksi uap, dan mengendalikan turbin uap. Turbin ini digunakan untuk menghasilkan energi listrik dan/atau melakukan pekerjaan mekanis.
Saat ini, energi nuklir menghasilkan sekitar 15,7% listrik yang dihasilkan di seluruh dunia (data tahun 2004) dan digunakan untuk menggerakkankapal induk,kapal pemecah es, dan kapal selam nuklir.

Kecelakaan
Kecelakaan nuklir diakibatkan oleh energi yang terlalu besar yang seringkali sangat berbahaya. Pada sejarahnya, insiden pertama melibatkan pemaparan radiasi yang fatal. Marie Curie meninggal akibat aplastik anemia yang merupakan hasil dari pemaparan nuklir tingkat tinggi. Dua peneliti amerika, Harry Daghlian dan Louis Slotin, meninggal akibat penanganan massa plutonium yang salah. Tidak seperti senjata konvensional, sinar yang intensif, panas, dan daya ledak bukan satu-satunya komponen mematikan bagi senjata nuklir. Diperkirakan setengah dari korban meninggal di Hiroshima dan Nagasaki meninggal setelah dua hingga lima tahun setelah pemaparan radiasi akibat bom atom.
Kecelakaan radiologi dan nuklir sipil sebagian melibatkan pembangkit listrik tenaga nuklir. Yang paling sering adalah pemaparan nuklir terhadap para pekerjanya akibat kebocoran nuklir. Kebocoran nuklir adalah istilah yang merujuk pada bahaya serius dalam pelepasan material nuklir ke lingkungan sekitar. Yang paling terkenal adalah kasus Three Mile Island di Pennsylvania dan Chernobyl di Ukraina. Reaktor militer yang mengalami kecelakaan yang sama adalah Windscale di Inggris dan SL-1 di Amerika Serikat.
Kecelakaan militer biasanya melibatkan kehilangan atau peledakkan senjata nuklir yang tidak diharapkan. Percobaan Castle Bravo di tahun 1954 menghasilkan ledakan diluar perkiraan, yang mengkontaminasi pulau terdekat, sebuah kapal penangkap ikan berbendera Jepang, dan meningkatkan kekhawatiran terhadap kontaminasi ikan di Jepang. Di tahun 1950an hingga 1970an, beberapa bom nuklir telah hilang dari kapal selam dan pesawat terbang, yang beberapa di antaranya tidak pernah ditemukan. Selama 20 tahun terakhir telah jadi pengurangan kasus demikian.
(Akhmad Khusyairi, ST, M.Eng.)